随后的几天,陈舟的热度越来越高。最新地址发送任意邮件到 ltx Sba@gmail.ㄈòМ 获取
再随着陈舟戴着一圈奖牌的照片,被
放在网上,那个酸哦……
现在的陈舟,走在校园里,受到的注目礼也越来越多了。
手机响起。
陈舟看着熟悉的备注,按下了接听键:“喂,大黄?有……”
电话一接通,陈舟话未说完,就传来了黄加一一连串惊叹的声音:“牛
啊,老陈!一个
碾压了国内所有数学专业的学生……”
陈舟把手机拿的离耳朵稍远了一些,才免受了这高分贝的骚扰。
直到对面的声音消停了一下,陈舟在缓缓说道:“呃……还行吧……”
陈舟话音未落,黄加一的高分贝加话唠模式再次开启:“卧槽,你这么谦虚的吗?这也叫还行?你没看到网上的讨论吗?有参赛同学证明了,这届丘赛的题目并不简单,你是唯一的满分。而且,你是唯一一个说面试题跟送分一样的
……”
不得不再次把手机拿远些,默默等着对方换气的契机。
终于,黄加一歇了
气,陈舟才说了一句:“呃……可能每个
面试的题目不一样吧……而且这个金奖的奖牌,压根不值钱……”
黄加一没理解陈舟的意思:“不值钱?这要是一个金奖可能不值钱,可你这是史无前例的一
包揽所有金奖,这意义是完全不一样的!”
“咳咳……”陈舟轻咳了一下,解释道,“我不是这个意思,我是说这个奖牌不值钱,它不是金的……”
黄加一:“……”
不再这个话题上多做纠缠,黄加一转而问道:“我听参赛学生
出来的消息,你把普林斯顿大学张守武教授的邀请,给拒绝了?”
“这你都知道了?你们这消息够快的啊?”陈舟感慨了一句。
昨天的事,今天居然连黄加一都知道了。现在的时代,消息也传的太快了吧……
陈舟停顿了一下,才继续道:“嗯……时机还不成熟,就拒绝了……”
黄加一再次大叫着说道:“我靠,那可是普林斯顿啊!!!你怎么下的去
的???”
旋即黄加一意识到了什么,紧接着又说道:“你难道是因为依依?依依不能去普林斯顿,所以,你也不去?”
陈舟很是无语,他还不至于这么不成熟。
他和杨依依还都是学生,现在是成长的最重要的阶段,也是需要珍惜机会的时刻,去国外
造也是必然的事
。
他之所以拒绝,是因为有着更多的考虑。
见陈舟没有说话,黄加一还以为自己说中了,不禁有些动容:“老陈啊,真没想到你居然是这么痴
的种,看来我把依依和你撮合在一起,还真是做对了。我相信你以后会给依依幸福的!”
“……”陈舟不知道该说什么好,旋即想了想,误会就误会吧,省的自己一时半会解释不清,这家伙再追着问。
之后,黄加一又跟陈舟感慨了一番,只觉得现在的陈舟已经越来越厉害了,而他却在一个最普通的一本院校混
子。
陈舟自然开导了黄加一一番,他建议黄加一把课程捡起来,可以试着考研。
如果不想考研的话,也可以提前规划自己的方向。
但无论怎样,把“书本”捡起来,总归是没错的。
黄加一的电话之后,张一凡、李响、陈海宁的电话,也随后就到。
虽不像黄加一这般声音震得耳朵都疼,但也是一连串的感叹,与羡慕。
尤其是陈海宁,更是兴奋的问陈舟,现在物理数学的竞赛,都拿过金牌了,那后续岂不是?
陈舟不置可否,于他而言,竞赛的遗憾,已经全部找补回来了。
再参加更多的竞赛,也没有多少意义。
况且,总要给其他同学一些机会嘛,要不然,他包揽了所有科目的金牌,其他同学会有意见的。
陈舟觉得自己还是具有一颗乐于分享的心的。
就像网友们的要求,他就响应了,把所有金奖拍照分享了。
令陈舟没想到的是,他在毛厂高中的老师们,也是发消息的发消息,打电话的打电话,各种恭喜他。
仿佛一瞬间,全世界认识他的
,都发来了贺电。
陈舟微微摇
,他竟有了一种一朝成名天下知的错觉。
可只有他自己知道,在数学的世界里,这五科金奖,这个
全能,这团体冠军,这一
满贯,又算得了什么?
这只不过是一个阶段
的检验而已,或许阶段
都算不上。
和眼前这张
稿纸上的内容相比,包揽个金奖,只是毛毛水啦。
陈舟正在继续对冰雹猜想的研究。
陈舟在刷了一定的文献之后,决定站着这些文献作者的肩膀上,再尝试一下。
【排除法主反例的存在可能
。】
因为陈舟在查阅文献之后发现,冰雹猜想的扩展题目,有不少是发现了反例的。
这样就说明,这些由冰雹猜想原题所延伸出来的问题,是错误的。
那么反过来想,如果把冰雹猜想视为这些延伸问题的反延伸,那是不是冰雹猜想也会有反例?
简单来说就是,冰雹猜想作为这些错误问题的延伸,那冰雹猜想会不会也是错误的?
目前已经总结出来的主反例规律是三个,无限归结,循环归结和互相归结。
无限归结,顾名思义,就是说因为是无限的数,所以没有办法归结于1。
这其中,数的数量必定是无穷多个。
第二种循环归结,也是字面意思。
因为陷
了循环,没完没了,而无法归结于1。
这里泛指3个或者是3个以上的奇数出现的病态循环归结。
至于互相归结,和循环归结的意思是一样的,同样是因为没完没了,而无法归结于1。
但是互相归结特指2个奇数出现的病态循环归结。
这三种
况依靠反例总结的病态归结,都在冰雹猜想的
度扩展题目里面,有着真实存在的例子。
同时,利用排除法,可以排除偶数和能被3整除的奇数。
从而确定这三种
况的主反例类型,都出现在不能被3整除的奇数。
那么,只需要证明这种主反例类型的奇数存在或者不存在,也就能间接证明冰雹猜想的成立与否。