一些数据异常的点,或者说“奇异点”。
如果不舍去奇异点的话,最终拟合结果很可能会和实际结果偏差很大,但如果舍去奇异点的话,怎么定义奇异点就是一个问题,主观成分很大。
换句话说,在数据拟合的过程中,存在着很大
作空间,有时候真的是想要什么数据,就能拟合出来什么数据。
就比如一组数,10、15、20、25、30,平均值是20,假如把10认为是奇异点给舍去了,剩下的四个数据,平均值就变化为了22.5。
在线
拟合中,这种
作对结果的影响还算比较小,而现在激子扩散距离的拟合是非线
的,如果强行去掉几个不那么“奇异”的“奇异点”,idic体系最终拟合出来的16.8纳米的结果,变更为26.8纳米都是可以实现的。
当然,许秋只是怀疑拟合结果存在误差,如果真实的结果就是他测试出来那样,他肯定不会进行“
作”的。
因为这种事
一旦开了
,就没有回
路可走了,只能不断编织谎言,用一个谎言去
饰另外一个谎言。
反正,就算分析不出来idic体系可以制备厚膜的原因,把真实的
况报道出来也好。
只要真诚一点说:“我们发现了一种独特的实验现象,但现在还无法解释”,然后可以把这个问题留给其他研究者,或者将来的自己来解决。
在确定了这个基调后,许秋将itic、idic的激子扩散距离测试实验,
由模拟实验室,进行大批量的重复。
周三上午,许秋拿到了模拟实验室测试的结果。
经过数百个实验数据的拟合,最终的结果表明,itic、idic的激子扩散距离分别为13.0纳米和19.2纳米。
这样看来,之前拟合结果因为数据量不足,确实是存在一定误差的。
而且,现在一增一减之下,itic和idic的激子扩散距离数值结果被拉开了大约48%的差距,这个幅度已经不算小了。
因此,可以保留之前结论,认为激子扩散距离的提高是“器件
能对厚度、尺寸不敏感”的主要原因之一。